
PyDP
Release 1.1.1

OpenMined

Aug 15, 2023

CONTENTS

1 Introduction To Differential Privacy 1

2 Introduction 3

3 Machine Learning and Data 5

4 Why is Differential Privacy so important ? 7

5 How is Differential Privacy implemented ? 9
5.1 Local Differential Privacy . 9
5.2 Global Differential Privacy . 9

6 Formal Definition Of Differential Privacy 11

7 Differential - Privacy In Real World 13

8 Further Reading 15

9 Introduction to PyDP 17
9.1 Installation . 17
9.2 Examples . 18
9.3 Learning Resources . 18
9.4 Support and Community on Slack . 19
9.5 Contributing . 19
9.6 License . 19

10 PyDP 21
10.1 Algorithms . 21
10.2 Numerical Mechanisms . 34
10.3 Distributions . 35
10.4 Util . 35
10.5 ML . 36
10.6 Partition Selection . 36

Python Module Index 37

Index 39

i

ii

CHAPTER

ONE

INTRODUCTION TO DIFFERENTIAL PRIVACY

1

PyDP, Release 1.1.1

2 Chapter 1. Introduction To Differential Privacy

CHAPTER

TWO

INTRODUCTION

The era where we are living in is data driven, tons and tons of data are being generated in every second. A lot of this
data is being used to improve our own lifestyle - be it recommending the best series to watch after a tiring day at work,
suggesting the best gifts to buy when it’s our best friend’s birthday or keeping our birthday party photos sorted so that
we can cherish them years later. All big companies are using data to gain insights of their progress which drives their
business. Machine Learning has made our life from easy to easier but is it just about improving our lifestyle? This
raises a question can machine learning change the way we live ? Can it improve our healthcare? Can ML be friends to
those who are lonely and have no one to talk with? The answer is “Yes” and also “No”.

3

PyDP, Release 1.1.1

4 Chapter 2. Introduction

CHAPTER

THREE

MACHINE LEARNING AND DATA

Machine Learning is extensively both data and research driven. The more the data is, better will be the research on that
particular topic. Now, all data cannot be released for research, there is a lot of private information which once leaked
can be misused. Take for example, to tackle a particular medical problem we need a lot of medical health records.
These records are considered as private information as no person would love the fact that her/his medical records are
identifiable by anyone on the internet. Hence, these are some real world issues that need immediate solutions but the
hands of the researchers are tied due to the unavailability of data. So, is there a solution ?

This is where “Differential Privacy” comes into the picture, a smarter way to a more secure and private AI. According
to Andrew Trask, Founder at OpenMined - “Differential Privacy is the process to answer questions or solve problems
using the data that we cannot see.” In this way researchers from all over the world can use private data in their research
work without identifying the individual.

Fig. 1: (Privacy Preserving AI (Andrew Trask) | MIT Deep Learning Series)

5

PyDP, Release 1.1.1

6 Chapter 3. Machine Learning and Data

CHAPTER

FOUR

WHY IS DIFFERENTIAL PRIVACY SO IMPORTANT ?

The aim of any privacy algorithm is to keep one’s private information safe and secured from external attacks. Differen-
tial privacy aims to keep an individual’s identity secured even if their data is being used in research. An easy approach
to maintain this kind of privacy is “Data Anonymization” which is a process of removing personally identifiable infor-
mation from a dataset. It is seen that there are cons in following this approach:

• Anonymizing certain fields may make the entire dataset useless and not fit for any analysis.

• There are related sources or datasets available on the web and by statistically studying both the datasets, an
individual can easily be re-identified.

• If the dataset is large, the type of queries that can be drawn from the dataset cannot be predicted. This makes any
dataset prone to external attacks.

Hence, this process is prone to risk and is considered as fundamentally wrong. Netflix once released a challenge for
everyone to build up the best recommendation engine. For this they released an anonymized dataset of 100 million
movie ratings from half a million users. So, they did not publicly release any data that could lead to the identification
of the users.

Fig. 1: Image Credits: Secure and Private AI (Udacity)

Despite the fact that the dataset was anonymized (no username or movie name was released) yet two Researchers at
University of Texas released a paper where they showed how they have de-anonymized a maximum chunk of the dataset.

7

https://www.cs.utexas.edu/~shmat/shmat_oak08netflix.pdf

PyDP, Release 1.1.1

They scraped the IMDB Website and by statistical analysis on these two datasets, they were able to identify the movie
names and also the individual names. Ten years down the line they have published yet another research paper where
they have reviewed de-anonymization of datasets in the present world. There are other instances too where such attacks
have been made which led to the leakage of private information.

Now, that we have learnt how important is “Differential Privacy”, let see how is the Differential Privacy actually im-
plemented.

8 Chapter 4. Why is Differential Privacy so important ?

https://www.cs.princeton.edu/~arvindn/publications/de-anonymization-retrospective.pdf

CHAPTER

FIVE

HOW IS DIFFERENTIAL PRIVACY IMPLEMENTED ?

According to Cynthia Dwork- “Differential privacy” describes a promise, made by a data holder, or curator, to a data
subject: “You will not be affected, adversely or otherwise, by allowing your data to be used in any study or analysis,
no matter what other studies, data sets, or information sources, are available.”

Thus this new area of research addresses the paradox of learning nothing about an individual while learning useful
information about the population. This is done by sending queries (a function applied to a database) to the data curator
(a protocol run by the set of individuals, using the various techniques for secure multiparty protocols). The goal of the
curator is to answer all the queries with highest possible accuracy without leaking any individual information using
various Differential-Privacy algorithms.

These algorithms add random noise to the queries and to the database. This is done in two ways:

• Local Differential Privacy

• Global Differential Privacy

5.1 Local Differential Privacy

In local differential privacy the random noise is applied at the start of the process(local) level i.e when the data is sent to
the data curator/aggregator. If the data is too confidential, generally the data generators do not want to trust the curator
and hence add noise to the dataset beforehand. This is adopted when the Data Curator cannot be completely trusted.

5.2 Global Differential Privacy

In Global differential privacy the random noise is applied at the global level i.e when the answer to a query is returned
to the User. This type of differential privacy is adopted when the Data generators trusts the data curator completely
and leaves it to the curator the amount of noise to be added to the results. This type of privacy results is more accurate
as it involves lesser noise.

9

https://www.microsoft.com/en-us/research/people/dwork

PyDP, Release 1.1.1

Fig. 1: Image Credit: Google Images

Fig. 2: Image Credits: Google Images

10 Chapter 5. How is Differential Privacy implemented ?

CHAPTER

SIX

FORMAL DEFINITION OF DIFFERENTIAL PRIVACY

In the book, “The Algorithmic Foundations of Differential Privacy” by Cynthia Dwork and Aaron Roth. Differential
Privacy is formally defined as: .. glossary:: A randomized algorithm M with domain N |X| is (,)-differentially private
if for all S Range(M) and for all x, y N |X| such that x y1 1:

Pr[M(x) S] exp() Pr[M(y) S] +

The Epsilon () and Delta() parameters measure the threshold for leakage.

• The Epsilon defines how different the actual actual data is from the queried data. If =0, exp()=1 which means
both the data are equal.

• The Delta is the probability that an information will accidentally be leaked as compared to the value of Epsilon.
If =0, that means no data is being leaked.

This when both Epsilon and Delta is 0, it is called Perfect-Privacy. The values are set in such a way so that the privacy
is maintained. This set of values is known as Privacy-Budget.

11

https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf

PyDP, Release 1.1.1

12 Chapter 6. Formal Definition Of Differential Privacy

CHAPTER

SEVEN

DIFFERENTIAL - PRIVACY IN REAL WORLD

Differential Privacy ensures privacy of all sorts of data which can be used by anyone to draw insights which can
help them run their business. In the present world, Differentially Private Data Analysis is widely used and these are
implemented by using various libraries.

PyDP by OpenMined is a Python Wrapper for Differential Privacy which allows all sorts of users to use Differential
Privacy in their Projects. Apart from this there are various other real-world cases of Differential Privacy from Medical
Imaging to Geolocation search. These have been covered in this blogpost by OpenMined.

SOME OTHER LIBRARIES FOR DP

• OpenDp by Harvard University and Microsoft

• Diffprivlib by IBM

• Google’s Differential Privacy Library .

DIFFERENTIAL PRIVACY IN USE

Top tech companies are using “Differential Privacy” in their day to day business for the privacy of data. Some of the
use cases are here as follows:

• Uber

Uber, a popular ride-sharing company uses Differential Privacy in its practices. The company uses a method of Differ-
ential Privacy called “elastic sensitivity”, developed in the University of California at Berkeley. It uses mathematics to
set limits on the number of statistical queries the staff can conduct on traffic patterns and driver’s revenue. This method
also ensures addition of noise in case the potential of a privacy breach is more severe.

• Apple

Apple also makes use of differential privacy to analyse user behaviour and improve user experience. Accessing private
data such as browsing history, apps that we browse, words that we type etc can compromise user privacy. But these data
are extremely useful when it comes to improving user experience. Apple makes use of “Local Differential Privacy”
algorithms which ensures that the raw data is randomized before sending it to the servers. This approach is implemented
at scale across on millions of users and by harnessing this data various business decisions are taken.

• Google

Google also uses this novel approach to keep user data private to themselves and perform data analysis with that data
to drive some of their core products. One such product is the Gboard (Google Keyboard), where it uses private data of
the user to generate word suggestions. The method used is “Federated Learning” which decreases the reliance on the
cloud and puts a strong focus on a user’s privacy. Rather than sending encrypted data to the servers, it downloads the
current model on device and improves it by learning from the data on device. The updated model with the changes is
sent to the cloud using encrypted communication. This is done at scale across all users and the updates from each user
is immediately averaged with other updates to improve the shared model. In the year 2019, Google open sourced the
Differential Privacy library for others to use.

13

https://github.com/OpenMined/PyDP
https://blog.openmined.org/use-cases-of-differential-privacy
https://github.com/opendifferentialprivacy
https://github.com/IBM/differential-privacy-library
https://github.com/google/differential-privacy
https://github.com/uber-archive/sql-differential-privacy
https://machinelearning.apple.com/research/learning-with-privacy-at-scale
https://developers.googleblog.com/2019/09/enabling-developers-and-organizations.html
https://developers.googleblog.com/2019/09/enabling-developers-and-organizations.html

PyDP, Release 1.1.1

Differential Privacy is playing an important role in building Privacy-protected Machine Learning solutions. PyDP is
an effort to democratize this field. To know more about Differential Privacy and PyDP head over to our amazing blog
series at OpenMined Blog.

14 Chapter 7. Differential - Privacy In Real World

https://blog.openmined.org

CHAPTER

EIGHT

FURTHER READING

• Secure and Private AI Course on Udacity by Andrew Trask

• “The Algorithmic Foundations of Differential Privacy” by Cynthia Dwork and Aaron Roth

• OpenMined Blogs on Differential Privacy

15

https://www.udacity.com/course/secure-and-private-ai--ud185
https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf
https://blog.openmined.org/tag/differential-privacy

PyDP, Release 1.1.1

16 Chapter 8. Further Reading

CHAPTER

NINE

INTRODUCTION TO PYDP

In today’s data-driven world, more and more researchers and data scientists use machine learning to create better models
or more innovative solutions for a better future.

These models often tend to handle sensitive or personal data, which can cause privacy issues. For example, some AI
models can memorize details about the data they’ve been trained on and could potentially leak these details later on.

To help measure sensitive data leakage and reduce the possibility of it happening, there is a mathematical framework
called differential privacy.

In 2020, OpenMined created a Python wrapper for Google’s Differential Privacy project called PyDP. The library
provides a set of -differentially private algorithms, which can be used to produce aggregate statistics over numeric
data sets containing private or sensitive information. Therefore, with PyDP you can control the privacy guarantee and
accuracy of your model written in Python.

Things to remember about PyDP:

• ::rocket: Features differentially private algorithms including: BoundedMean, BoundedSum, Max, Count Above,
Percentile, Min, Median, etc.

• All the computation methods mentioned above use Laplace noise only (other noise mechanisms will be added
soon! :smiley:).

• ::fire: Currently supports Linux and macOS (Windows support coming soon :smiley:)

• ::star: Use Python 3.6+. Support for Python 3.5 and below is deprecated.

9.1 Installation

To install PyDP, use the PiPy package manager:

pip install python-dp

(If you have pip3 separately for Python 3.x, use pip3 install python-dp.)

17

https://github.com/google/differential-privacy
https://pip.pypa.io/en/stable/

PyDP, Release 1.1.1

9.2 Examples

Refer to the curated list of tutorials and sample code to learn more about the PyDP library.

You can also get started with an introduction to PyDP (a Jupyter notebook) and the carrots demo (a Python file).

Example: calculate the Bounded Mean

Import PyDP
import pydp as dp
Import the Bounded Mean algorithm
from pydp.algorithms.laplacian import BoundedMean

Calculate the Bounded Mean
Basic Structure: `BoundedMean(epsilon: float, lower_bound: Union[int, float, None],␣
→˓upper_bound: Union[int, float, None])`
`epsilon`: a Double, between 0 and 1, denoting the privacy threshold,
measures the acceptable loss of privacy (with 0 meaning no loss is␣
→˓acceptable)
x = BoundedMean(epsilon=0.6, lower_bound=1, upper_bound=10)

If the lower and upper bounds are not specified,
PyDP automatically calculates these bounds
x = BoundedMean(epsilon: float)
x = BoundedMean(0.6)

Calculate the result
Currently supported data types are integers and floats
Future versions will support additional data types
(Refer to https://github.com/OpenMined/PyDP/blob/dev/examples/carrots.py)
x.quick_result(input_data: list)

9.3 Learning Resources

Go to resources to learn more about differential privacy.

18 Chapter 9. Introduction to PyDP

https://github.com/OpenMined/PyDP/tree/dev/examples
https://github.com/OpenMined/PyDP/blob/dev/examples/Tutorial_1-carrots_demo/carrots_demo.ipynb
https://github.com/OpenMined/PyDP/blob/dev/examples/Tutorial_1-carrots_demo/carrots.py
https://github.com/OpenMined/PyDP/blob/dev/resources.md

PyDP, Release 1.1.1

9.4 Support and Community on Slack

If you have questions about the PyDP library, join OpenMined’s Slack and check the #lib_pydp channel. To follow the
code source changes, join #code_dp_python.

9.5 Contributing

To contribute to the PyDP project, read the guidelines.

Pull requests are welcome. If you want to introduce major changes, please open an issue first to discuss what you would
like to change.

Please make sure to update tests as appropriate.

<!– ## Contributors –>

9.6 License

Apache License 2.0

9.4. Support and Community on Slack 19

https://slack.openmined.org
https://github.com/OpenMined/PyDP/blob/dev/contributing.md
https://choosealicense.com/licenses/apache-2.0/

PyDP, Release 1.1.1

20 Chapter 9. Introduction to PyDP

CHAPTER

TEN

PYDP

10.1 Algorithms

class pydp.algorithms.laplacian.BoundedMean(epsilon: float = 1.0, delta: float = 0, lower_bound:
Optional[Union[int, float]] = None, upper_bound:
Optional[Union[int, float]] = None, l0_sensitivity: int = 1,
linf_sensitivity: int = 1, dtype: str = 'int')

BoundedMean computes the average of values in a dataset, in a differentially private manner.

Incrementally provides a differentially private average. All input vales are normalized to be their difference
from the middle of the input range. That allows us to calculate the sum of all input values with half the sensi-
tivity it would otherwise take for better accuracy (as compared to doing noisy sum / noisy count). This algo-
rithm is taken from section 2.5.5 of the following book (algorithm 2.4): https://books.google.com/books?id=
WFttDQAAQBAJ&pg=PA24#v=onepage&q&f=false

add_entries(data: List[Union[int, float]])→ None
Adds multiple inputs to the algorithm.

Note: If the data exceeds the overflow limit of storage, the current list passed is not added.

add_entry(value: Union[int, float])→ None
Adds one input to the algorithm.

Note: If the data exceeds the overflow limit of storage, the current data passed is not added.

property delta: float

Returns the epsilon set at initialization.

property epsilon: float

Returns the epsilon set at initialization.

property l0_sensitivity: float

Returns the l0_sensitivity set at initialization.

property linf_sensitivity: float

Returns the linf_sensitivity set at initialization.

memory_used()→ float
Returns the memory currently used by the algorithm in bytes.

merge(summary)
Merges serialized summary data into this algorithm. The summary proto must represent data from the same
algorithm type with identical parameters. The data field must contain the algorithm summary type of the
corresponding algorithm used. The summary proto cannot be empty.

21

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://books.google.com/books?id=WFttDQAAQBAJ&pg=PA24#v=onepage&q&f=false
https://books.google.com/books?id=WFttDQAAQBAJ&pg=PA24#v=onepage&q&f=false
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PyDP, Release 1.1.1

noise_confidence_interval(confidence_level: float, privacy_budget: float)→ float
Returns the confidence_level confidence interval of noise added within the algorithm with specified pri-
vacy budget, using epsilon and other relevant, algorithm-specific parameters (e.g. bounds) provided by the
constructor.

This metric may be used to gauge the error rate introduced by the noise.

If the returned value is <x,y>, then the noise added has a confidence_level chance of being in the domain
[x,y].

By default, NoiseConfidenceInterval() returns an error. Algorithms for which a confidence interval can
feasibly be calculated override this and output the relevant value.

Conservatively, we do not release the error rate for algorithms whose confidence intervals rely on input
size.

privacy_budget_left()→ float
Returns the remaining privacy budget.

quick_result(data: List[Union[int, float]])→ Union[int, float]
Runs the algorithm on the input using the epsilon parameter provided in the constructor and returns output.

Consumes 100% of the privacy budget.

Note: It resets the privacy budget first.

reset()→ None
Resets the algorithm to a state in which it has received no input. After Reset is called, the algorithm should
only consider input added after the last Reset call when providing output.

result(privacy_budget: Optional[float] = None, noise_interval_level: Optional[float] = None)→ Union[int,
float]

Gets the algorithm result.

The default call consumes the remaining privacy budget.

When privacy_budget (defined on [0,1]) is set, it consumes only the privacy_budget amount of budget.

noise_interval_level provides the confidence level of the noise confidence interval, which may be included
in the algorithm output.

serialize()

Serializes summary data of current entries into Summary proto. This allows results from distributed ag-
gregation to be recorded and later merged.

Returns empty summary for algorithms for which serialize is unimplemented.

class pydp.algorithms.laplacian.BoundedSum(epsilon: float = 1.0, delta: float = 0, lower_bound:
Optional[Union[int, float]] = None, upper_bound:
Optional[Union[int, float]] = None, l0_sensitivity: int = 1,
linf_sensitivity: int = 1, dtype: str = 'int')

BoundedSum computes the sum of values in a dataset, in a differentially private manner.

Incrementally provides a differentially private sum, clamped between upper and lower values. Bounds can be
manually set or privately inferred.

add_entries(data: List[Union[int, float]])→ None
Adds multiple inputs to the algorithm.

Note: If the data exceeds the overflow limit of storage, the current list passed is not added.

22 Chapter 10. PyDP

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

PyDP, Release 1.1.1

add_entry(value: Union[int, float])→ None
Adds one input to the algorithm.

Note: If the data exceeds the overflow limit of storage, the current data passed is not added.

property delta: float

Returns the epsilon set at initialization.

property epsilon: float

Returns the epsilon set at initialization.

property l0_sensitivity: float

Returns the l0_sensitivity set at initialization.

property linf_sensitivity: float

Returns the linf_sensitivity set at initialization.

memory_used()→ float
Returns the memory currently used by the algorithm in bytes.

merge(summary)
Merges serialized summary data into this algorithm. The summary proto must represent data from the same
algorithm type with identical parameters. The data field must contain the algorithm summary type of the
corresponding algorithm used. The summary proto cannot be empty.

noise_confidence_interval(confidence_level: float, privacy_budget: float)→ float
Returns the confidence_level confidence interval of noise added within the algorithm with specified pri-
vacy budget, using epsilon and other relevant, algorithm-specific parameters (e.g. bounds) provided by the
constructor.

This metric may be used to gauge the error rate introduced by the noise.

If the returned value is <x,y>, then the noise added has a confidence_level chance of being in the domain
[x,y].

By default, NoiseConfidenceInterval() returns an error. Algorithms for which a confidence interval can
feasibly be calculated override this and output the relevant value.

Conservatively, we do not release the error rate for algorithms whose confidence intervals rely on input
size.

privacy_budget_left()→ float
Returns the remaining privacy budget.

quick_result(data: List[Union[int, float]])→ Union[int, float]
Runs the algorithm on the input using the epsilon parameter provided in the constructor and returns output.

Consumes 100% of the privacy budget.

Note: It resets the privacy budget first.

reset()→ None
Resets the algorithm to a state in which it has received no input. After Reset is called, the algorithm should
only consider input added after the last Reset call when providing output.

result(privacy_budget: Optional[float] = None, noise_interval_level: Optional[float] = None)→ Union[int,
float]

Gets the algorithm result.

The default call consumes the remaining privacy budget.

10.1. Algorithms 23

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

PyDP, Release 1.1.1

When privacy_budget (defined on [0,1]) is set, it consumes only the privacy_budget amount of budget.

noise_interval_level provides the confidence level of the noise confidence interval, which may be included
in the algorithm output.

serialize()

Serializes summary data of current entries into Summary proto. This allows results from distributed ag-
gregation to be recorded and later merged.

Returns empty summary for algorithms for which serialize is unimplemented.

class pydp.algorithms.laplacian.BoundedStandardDeviation(epsilon: float = 1.0, delta: float = 0,
lower_bound: Optional[Union[int, float]]
= None, upper_bound:
Optional[Union[int, float]] = None,
l0_sensitivity: int = 1, linf_sensitivity: int
= 1, dtype: str = 'int')

BoundedStandardDeviation computes the standard deviation of values in a dataset, in a differentially private
manner.

Incrementally provides a differentially private standard deviation for values in the range [lower..upper]. Values
outside of this range will be clamped so they lie in the range. The output will also be clamped between 0 and
(upper - lower).

The implementation simply computes the bounded variance and takes the square root, which is differentially
private by the post-processing theorem. It relies on the fact that the bounded variance algorithm guarantees that
the output is non-negative.

add_entries(data: List[Union[int, float]])→ None
Adds multiple inputs to the algorithm.

Note: If the data exceeds the overflow limit of storage, the current list passed is not added.

add_entry(value: Union[int, float])→ None
Adds one input to the algorithm.

Note: If the data exceeds the overflow limit of storage, the current data passed is not added.

property delta: float

Returns the epsilon set at initialization.

property epsilon: float

Returns the epsilon set at initialization.

property l0_sensitivity: float

Returns the l0_sensitivity set at initialization.

property linf_sensitivity: float

Returns the linf_sensitivity set at initialization.

memory_used()→ float
Returns the memory currently used by the algorithm in bytes.

merge(summary)
Merges serialized summary data into this algorithm. The summary proto must represent data from the same
algorithm type with identical parameters. The data field must contain the algorithm summary type of the
corresponding algorithm used. The summary proto cannot be empty.

24 Chapter 10. PyDP

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PyDP, Release 1.1.1

noise_confidence_interval(confidence_level: float, privacy_budget: float)→ float
Returns the confidence_level confidence interval of noise added within the algorithm with specified pri-
vacy budget, using epsilon and other relevant, algorithm-specific parameters (e.g. bounds) provided by the
constructor.

This metric may be used to gauge the error rate introduced by the noise.

If the returned value is <x,y>, then the noise added has a confidence_level chance of being in the domain
[x,y].

By default, NoiseConfidenceInterval() returns an error. Algorithms for which a confidence interval can
feasibly be calculated override this and output the relevant value.

Conservatively, we do not release the error rate for algorithms whose confidence intervals rely on input
size.

privacy_budget_left()→ float
Returns the remaining privacy budget.

quick_result(data: List[Union[int, float]])→ Union[int, float]
Runs the algorithm on the input using the epsilon parameter provided in the constructor and returns output.

Consumes 100% of the privacy budget.

Note: It resets the privacy budget first.

reset()→ None
Resets the algorithm to a state in which it has received no input. After Reset is called, the algorithm should
only consider input added after the last Reset call when providing output.

result(privacy_budget: Optional[float] = None, noise_interval_level: Optional[float] = None)→ Union[int,
float]

Gets the algorithm result.

The default call consumes the remaining privacy budget.

When privacy_budget (defined on [0,1]) is set, it consumes only the privacy_budget amount of budget.

noise_interval_level provides the confidence level of the noise confidence interval, which may be included
in the algorithm output.

serialize()

Serializes summary data of current entries into Summary proto. This allows results from distributed ag-
gregation to be recorded and later merged.

Returns empty summary for algorithms for which serialize is unimplemented.

class pydp.algorithms.laplacian.BoundedVariance(epsilon: float = 1.0, delta: float = 0, lower_bound:
Optional[Union[int, float]] = None, upper_bound:
Optional[Union[int, float]] = None, l0_sensitivity: int
= 1, linf_sensitivity: int = 1, dtype: str = 'int')

BoundedVariance computes the variance of values in a dataset, in a differentially private manner.

Incrementally provides a differentially private variance for values in the range [lower..upper]. Values outside of
this range will be clamped so they lie in the range. The output will also be clamped between 0 and (upper -
lower)^2. Since the result is guaranteed to be positive, this algorithm can be used to compute a differentially
private standard deviation.

The algorithm uses O(1) memory and runs in O(n) time where n is the size of the dataset, making it a fast and
efficient. The amount of noise added grows quadratically in (upper - lower) and decreases linearly in n, so it
might not produce good results unless n >> (upper - lower)^2.

10.1. Algorithms 25

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

PyDP, Release 1.1.1

The algorithm is a variation of the algorithm for differentially private mean from “Differential Privacy: From The-
ory to Practice”, section 2.5.5: https://books.google.com/books?id=WFttDQAAQBAJ&pg=PA24#v=onepage&
q&f=false

add_entries(data: List[Union[int, float]])→ None
Adds multiple inputs to the algorithm.

Note: If the data exceeds the overflow limit of storage, the current list passed is not added.

add_entry(value: Union[int, float])→ None
Adds one input to the algorithm.

Note: If the data exceeds the overflow limit of storage, the current data passed is not added.

property delta: float

Returns the epsilon set at initialization.

property epsilon: float

Returns the epsilon set at initialization.

property l0_sensitivity: float

Returns the l0_sensitivity set at initialization.

property linf_sensitivity: float

Returns the linf_sensitivity set at initialization.

memory_used()→ float
Returns the memory currently used by the algorithm in bytes.

merge(summary)
Merges serialized summary data into this algorithm. The summary proto must represent data from the same
algorithm type with identical parameters. The data field must contain the algorithm summary type of the
corresponding algorithm used. The summary proto cannot be empty.

noise_confidence_interval(confidence_level: float, privacy_budget: float)→ float
Returns the confidence_level confidence interval of noise added within the algorithm with specified pri-
vacy budget, using epsilon and other relevant, algorithm-specific parameters (e.g. bounds) provided by the
constructor.

This metric may be used to gauge the error rate introduced by the noise.

If the returned value is <x,y>, then the noise added has a confidence_level chance of being in the domain
[x,y].

By default, NoiseConfidenceInterval() returns an error. Algorithms for which a confidence interval can
feasibly be calculated override this and output the relevant value.

Conservatively, we do not release the error rate for algorithms whose confidence intervals rely on input
size.

privacy_budget_left()→ float
Returns the remaining privacy budget.

quick_result(data: List[Union[int, float]])→ Union[int, float]
Runs the algorithm on the input using the epsilon parameter provided in the constructor and returns output.

Consumes 100% of the privacy budget.

Note: It resets the privacy budget first.

26 Chapter 10. PyDP

https://books.google.com/books?id=WFttDQAAQBAJ&pg=PA24#v=onepage&q&f=false
https://books.google.com/books?id=WFttDQAAQBAJ&pg=PA24#v=onepage&q&f=false
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

PyDP, Release 1.1.1

reset()→ None
Resets the algorithm to a state in which it has received no input. After Reset is called, the algorithm should
only consider input added after the last Reset call when providing output.

result(privacy_budget: Optional[float] = None, noise_interval_level: Optional[float] = None)→ Union[int,
float]

Gets the algorithm result.

The default call consumes the remaining privacy budget.

When privacy_budget (defined on [0,1]) is set, it consumes only the privacy_budget amount of budget.

noise_interval_level provides the confidence level of the noise confidence interval, which may be included
in the algorithm output.

serialize()

Serializes summary data of current entries into Summary proto. This allows results from distributed ag-
gregation to be recorded and later merged.

Returns empty summary for algorithms for which serialize is unimplemented.

class pydp.algorithms.laplacian.Max(epsilon: float = 1.0, delta: float = 0, lower_bound:
Optional[Union[int, float]] = None, upper_bound:
Optional[Union[int, float]] = None, l0_sensitivity: int = 1,
linf_sensitivity: int = 1, dtype: str = 'int')

Max computes the Max value in the dataset, in a differentially private manner.

add_entries(data: List[Union[int, float]])→ None
Adds multiple inputs to the algorithm.

Note: If the data exceeds the overflow limit of storage, the current list passed is not added.

add_entry(value: Union[int, float])→ None
Adds one input to the algorithm.

Note: If the data exceeds the overflow limit of storage, the current data passed is not added.

property delta: float

Returns the epsilon set at initialization.

property epsilon: float

Returns the epsilon set at initialization.

property l0_sensitivity: float

Returns the l0_sensitivity set at initialization.

property linf_sensitivity: float

Returns the linf_sensitivity set at initialization.

memory_used()→ float
Returns the memory currently used by the algorithm in bytes.

merge(summary)
Merges serialized summary data into this algorithm. The summary proto must represent data from the same
algorithm type with identical parameters. The data field must contain the algorithm summary type of the
corresponding algorithm used. The summary proto cannot be empty.

10.1. Algorithms 27

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PyDP, Release 1.1.1

noise_confidence_interval(confidence_level: float, privacy_budget: float)→ float
Returns the confidence_level confidence interval of noise added within the algorithm with specified pri-
vacy budget, using epsilon and other relevant, algorithm-specific parameters (e.g. bounds) provided by the
constructor.

This metric may be used to gauge the error rate introduced by the noise.

If the returned value is <x,y>, then the noise added has a confidence_level chance of being in the domain
[x,y].

By default, NoiseConfidenceInterval() returns an error. Algorithms for which a confidence interval can
feasibly be calculated override this and output the relevant value.

Conservatively, we do not release the error rate for algorithms whose confidence intervals rely on input
size.

privacy_budget_left()→ float
Returns the remaining privacy budget.

quick_result(data: List[Union[int, float]])→ Union[int, float]
Runs the algorithm on the input using the epsilon parameter provided in the constructor and returns output.

Consumes 100% of the privacy budget.

Note: It resets the privacy budget first.

reset()→ None
Resets the algorithm to a state in which it has received no input. After Reset is called, the algorithm should
only consider input added after the last Reset call when providing output.

result(privacy_budget: Optional[float] = None, noise_interval_level: Optional[float] = None)→ Union[int,
float]

Gets the algorithm result.

The default call consumes the remaining privacy budget.

When privacy_budget (defined on [0,1]) is set, it consumes only the privacy_budget amount of budget.

noise_interval_level provides the confidence level of the noise confidence interval, which may be included
in the algorithm output.

serialize()

Serializes summary data of current entries into Summary proto. This allows results from distributed ag-
gregation to be recorded and later merged.

Returns empty summary for algorithms for which serialize is unimplemented.

class pydp.algorithms.laplacian.Min(epsilon: float = 1.0, delta: float = 0, lower_bound:
Optional[Union[int, float]] = None, upper_bound:
Optional[Union[int, float]] = None, l0_sensitivity: int = 1,
linf_sensitivity: int = 1, dtype: str = 'int')

Min computes the minium value in the dataset, in a differentially private manner.

add_entries(data: List[Union[int, float]])→ None
Adds multiple inputs to the algorithm.

Note: If the data exceeds the overflow limit of storage, the current list passed is not added.

add_entry(value: Union[int, float])→ None
Adds one input to the algorithm.

Note: If the data exceeds the overflow limit of storage, the current data passed is not added.

28 Chapter 10. PyDP

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

PyDP, Release 1.1.1

property delta: float

Returns the epsilon set at initialization.

property epsilon: float

Returns the epsilon set at initialization.

property l0_sensitivity: float

Returns the l0_sensitivity set at initialization.

property linf_sensitivity: float

Returns the linf_sensitivity set at initialization.

memory_used()→ float
Returns the memory currently used by the algorithm in bytes.

merge(summary)
Merges serialized summary data into this algorithm. The summary proto must represent data from the same
algorithm type with identical parameters. The data field must contain the algorithm summary type of the
corresponding algorithm used. The summary proto cannot be empty.

noise_confidence_interval(confidence_level: float, privacy_budget: float)→ float
Returns the confidence_level confidence interval of noise added within the algorithm with specified pri-
vacy budget, using epsilon and other relevant, algorithm-specific parameters (e.g. bounds) provided by the
constructor.

This metric may be used to gauge the error rate introduced by the noise.

If the returned value is <x,y>, then the noise added has a confidence_level chance of being in the domain
[x,y].

By default, NoiseConfidenceInterval() returns an error. Algorithms for which a confidence interval can
feasibly be calculated override this and output the relevant value.

Conservatively, we do not release the error rate for algorithms whose confidence intervals rely on input
size.

privacy_budget_left()→ float
Returns the remaining privacy budget.

quick_result(data: List[Union[int, float]])→ Union[int, float]
Runs the algorithm on the input using the epsilon parameter provided in the constructor and returns output.

Consumes 100% of the privacy budget.

Note: It resets the privacy budget first.

reset()→ None
Resets the algorithm to a state in which it has received no input. After Reset is called, the algorithm should
only consider input added after the last Reset call when providing output.

result(privacy_budget: Optional[float] = None, noise_interval_level: Optional[float] = None)→ Union[int,
float]

Gets the algorithm result.

The default call consumes the remaining privacy budget.

When privacy_budget (defined on [0,1]) is set, it consumes only the privacy_budget amount of budget.

noise_interval_level provides the confidence level of the noise confidence interval, which may be included
in the algorithm output.

10.1. Algorithms 29

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

PyDP, Release 1.1.1

serialize()

Serializes summary data of current entries into Summary proto. This allows results from distributed ag-
gregation to be recorded and later merged.

Returns empty summary for algorithms for which serialize is unimplemented.

class pydp.algorithms.laplacian.Median(epsilon: float = 1.0, delta: float = 0, lower_bound:
Optional[Union[int, float]] = None, upper_bound:
Optional[Union[int, float]] = None, l0_sensitivity: int = 1,
linf_sensitivity: int = 1, dtype: str = 'int')

Median computes the Median value in the dataset, in a differentially private manner.

add_entries(data: List[Union[int, float]])→ None
Adds multiple inputs to the algorithm.

Note: If the data exceeds the overflow limit of storage, the current list passed is not added.

add_entry(value: Union[int, float])→ None
Adds one input to the algorithm.

Note: If the data exceeds the overflow limit of storage, the current data passed is not added.

property delta: float

Returns the epsilon set at initialization.

property epsilon: float

Returns the epsilon set at initialization.

property l0_sensitivity: float

Returns the l0_sensitivity set at initialization.

property linf_sensitivity: float

Returns the linf_sensitivity set at initialization.

memory_used()→ float
Returns the memory currently used by the algorithm in bytes.

merge(summary)
Merges serialized summary data into this algorithm. The summary proto must represent data from the same
algorithm type with identical parameters. The data field must contain the algorithm summary type of the
corresponding algorithm used. The summary proto cannot be empty.

noise_confidence_interval(confidence_level: float, privacy_budget: float)→ float
Returns the confidence_level confidence interval of noise added within the algorithm with specified pri-
vacy budget, using epsilon and other relevant, algorithm-specific parameters (e.g. bounds) provided by the
constructor.

This metric may be used to gauge the error rate introduced by the noise.

If the returned value is <x,y>, then the noise added has a confidence_level chance of being in the domain
[x,y].

By default, NoiseConfidenceInterval() returns an error. Algorithms for which a confidence interval can
feasibly be calculated override this and output the relevant value.

Conservatively, we do not release the error rate for algorithms whose confidence intervals rely on input
size.

privacy_budget_left()→ float
Returns the remaining privacy budget.

30 Chapter 10. PyDP

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PyDP, Release 1.1.1

quick_result(data: List[Union[int, float]])→ Union[int, float]
Runs the algorithm on the input using the epsilon parameter provided in the constructor and returns output.

Consumes 100% of the privacy budget.

Note: It resets the privacy budget first.

reset()→ None
Resets the algorithm to a state in which it has received no input. After Reset is called, the algorithm should
only consider input added after the last Reset call when providing output.

result(privacy_budget: Optional[float] = None, noise_interval_level: Optional[float] = None)→ Union[int,
float]

Gets the algorithm result.

The default call consumes the remaining privacy budget.

When privacy_budget (defined on [0,1]) is set, it consumes only the privacy_budget amount of budget.

noise_interval_level provides the confidence level of the noise confidence interval, which may be included
in the algorithm output.

serialize()

Serializes summary data of current entries into Summary proto. This allows results from distributed ag-
gregation to be recorded and later merged.

Returns empty summary for algorithms for which serialize is unimplemented.

class pydp.algorithms.laplacian.Count(epsilon: float = 1.0, l0_sensitivity: int = 1, linf_sensitivity: int = 1,
dtype: str = 'int')

Count computes the Count of number of items in the dataset, in a differentially private manner.

add_entries(data: List[Union[int, float]])→ None
Adds multiple inputs to the algorithm.

Note: If the data exceeds the overflow limit of storage, the current list passed is not added.

add_entry(value: Union[int, float])→ None
Adds one input to the algorithm.

Note: If the data exceeds the overflow limit of storage, the current data passed is not added.

property delta: float

Returns the epsilon set at initialization.

property epsilon: float

Returns the epsilon set at initialization.

property l0_sensitivity: float

Returns the l0_sensitivity set at initialization.

property linf_sensitivity: float

Returns the linf_sensitivity set at initialization.

memory_used()→ float
Returns the memory currently used by the algorithm in bytes.

merge(summary)
Merges serialized summary data into this algorithm. The summary proto must represent data from the same
algorithm type with identical parameters. The data field must contain the algorithm summary type of the
corresponding algorithm used. The summary proto cannot be empty.

10.1. Algorithms 31

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PyDP, Release 1.1.1

noise_confidence_interval(confidence_level: float, privacy_budget: float)→ float
Returns the confidence_level confidence interval of noise added within the algorithm with specified pri-
vacy budget, using epsilon and other relevant, algorithm-specific parameters (e.g. bounds) provided by the
constructor.

This metric may be used to gauge the error rate introduced by the noise.

If the returned value is <x,y>, then the noise added has a confidence_level chance of being in the domain
[x,y].

By default, NoiseConfidenceInterval() returns an error. Algorithms for which a confidence interval can
feasibly be calculated override this and output the relevant value.

Conservatively, we do not release the error rate for algorithms whose confidence intervals rely on input
size.

privacy_budget_left()→ float
Returns the remaining privacy budget.

quick_result(data: List[Union[int, float]])→ Union[int, float]
Runs the algorithm on the input using the epsilon parameter provided in the constructor and returns output.

Consumes 100% of the privacy budget.

Note: It resets the privacy budget first.

reset()→ None
Resets the algorithm to a state in which it has received no input. After Reset is called, the algorithm should
only consider input added after the last Reset call when providing output.

result(privacy_budget: Optional[float] = None, noise_interval_level: Optional[float] = None)→ Union[int,
float]

Gets the algorithm result.

The default call consumes the remaining privacy budget.

When privacy_budget (defined on [0,1]) is set, it consumes only the privacy_budget amount of budget.

noise_interval_level provides the confidence level of the noise confidence interval, which may be included
in the algorithm output.

serialize()

Serializes summary data of current entries into Summary proto. This allows results from distributed ag-
gregation to be recorded and later merged.

Returns empty summary for algorithms for which serialize is unimplemented.

class pydp.algorithms.laplacian.Percentile(epsilon: float = 1.0, percentile: float = 0.0, lower_bound:
Optional[Union[int, float]] = None, upper_bound:
Optional[Union[int, float]] = None, dtype: str = 'int')

Perencetile finds the value in the dataset with that percentile, in a differentially private manner.

add_entries(data: List[Union[int, float]])→ None
Adds multiple inputs to the algorithm.

Note: If the data exceeds the overflow limit of storage, the current list passed is not added.

add_entry(value: Union[int, float])→ None
Adds one input to the algorithm.

Note: If the data exceeds the overflow limit of storage, the current data passed is not added.

32 Chapter 10. PyDP

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

PyDP, Release 1.1.1

property delta: float

Returns the epsilon set at initialization.

property epsilon: float

Returns the epsilon set at initialization.

property l0_sensitivity: float

Returns the l0_sensitivity set at initialization.

property linf_sensitivity: float

Returns the linf_sensitivity set at initialization.

memory_used()→ float
Returns the memory currently used by the algorithm in bytes.

merge(summary)
Merges serialized summary data into this algorithm. The summary proto must represent data from the same
algorithm type with identical parameters. The data field must contain the algorithm summary type of the
corresponding algorithm used. The summary proto cannot be empty.

noise_confidence_interval(confidence_level: float, privacy_budget: float)→ float
Returns the confidence_level confidence interval of noise added within the algorithm with specified pri-
vacy budget, using epsilon and other relevant, algorithm-specific parameters (e.g. bounds) provided by the
constructor.

This metric may be used to gauge the error rate introduced by the noise.

If the returned value is <x,y>, then the noise added has a confidence_level chance of being in the domain
[x,y].

By default, NoiseConfidenceInterval() returns an error. Algorithms for which a confidence interval can
feasibly be calculated override this and output the relevant value.

Conservatively, we do not release the error rate for algorithms whose confidence intervals rely on input
size.

property percentile: float

percentile Gets the value that was set in the constructor.

privacy_budget_left()→ float
Returns the remaining privacy budget.

quick_result(data: List[Union[int, float]])→ Union[int, float]
Runs the algorithm on the input using the epsilon parameter provided in the constructor and returns output.

Consumes 100% of the privacy budget.

Note: It resets the privacy budget first.

reset()→ None
Resets the algorithm to a state in which it has received no input. After Reset is called, the algorithm should
only consider input added after the last Reset call when providing output.

result(privacy_budget: Optional[float] = None, noise_interval_level: Optional[float] = None)→ Union[int,
float]

Gets the algorithm result.

The default call consumes the remaining privacy budget.

When privacy_budget (defined on [0,1]) is set, it consumes only the privacy_budget amount of budget.

10.1. Algorithms 33

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

PyDP, Release 1.1.1

noise_interval_level provides the confidence level of the noise confidence interval, which may be included
in the algorithm output.

serialize()

Serializes summary data of current entries into Summary proto. This allows results from distributed ag-
gregation to be recorded and later merged.

Returns empty summary for algorithms for which serialize is unimplemented.

10.2 Numerical Mechanisms

class pydp.algorithms.numerical_mechanisms.NumericalMechanism

Base class for all (,)-differenially private additive noise numerical mechanisms.

add_noise(*args, **kwargs)
Overloaded function.

1. add_noise(self: pydp.NumericalMechanism, result: int, privacy_budget: float) -> int

2. add_noise(self: pydp.NumericalMechanism, result: int, privacy_budget: float) -> int

3. add_noise(self: pydp.NumericalMechanism, result: float, privacy_budget: float) -> float

4. add_noise(self: pydp.NumericalMechanism, result: int) -> int

5. add_noise(self: pydp.NumericalMechanism, result: int) -> int

6. add_noise(self: pydp.NumericalMechanism, result: float) -> float

property epsilon

The of the numerical mechanism

memory_used(self: pydp.NumericalMechanism)→ int

noise_confidence_interval(self: pydp.NumericalMechanism, confidence_level: float, privacy_budget:
float, noised_result: float)→ pydp.ConfidenceInterval

Returns the confidence interval of the specified confidence level of the noise that AddNoise() would add
with the specified privacy budget. If the returned value is <x,y>, then the noise added has a confidence_level
chance of being in the domain [x,y]

noised_value_above_threshold(self: pydp.NumericalMechanism, arg0: float, arg1: float)→ bool
Quickly determines if result with added noise is above certain threshold.

class pydp.algorithms.numerical_mechanisms.LaplaceMechanism

Bases: NumericalMechanism

property diversity

The diversity of the Laplace mechanism.

get_uniform_double(self: pydp.LaplaceMechanism)→ float

property sensitivity

The L1 sensitivity of the query.

class pydp.algorithms.numerical_mechanisms.GaussianMechanism

Bases: NumericalMechanism

34 Chapter 10. PyDP

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

PyDP, Release 1.1.1

property delta

The of the Gaussian mechanism.

property l2_sensitivity

The L2 sensitivity of the query.

property std

The standard deviation parameter of the Gaussian mechanism underlying distribution.

10.3 Distributions

class pydp.distributions.GaussianDistribution

sample(self: pydp.GaussianDistribution, scale: float = 1.0)→ float

Samples the Gaussian with distribution Gauss(scale*stddev).

scale
A factor to scale stddev.

property stddev

Returns stddev

class pydp.distributions.LaplaceDistribution

Draws samples from the Laplacian distribution.

get_diversity(self: pydp.LaplaceDistribution)→ float
Returns the parameter defining this distribution, often labeled b.

get_uniform_double(self: pydp.LaplaceDistribution)→ float
Returns a uniform random integer of in range [0, 2^53).

sample(self: pydp.LaplaceDistribution, scale: float = 1.0)→ float
Samples the Laplacian distribution Laplace(u, scale*b).

Parameters
scale – A factor to scale b.

10.4 Util

pydp.util.Geometric()→ int

pydp.util.UniformDouble()→ float

pydp.util.correlation(arg0: List[float], arg1: List[float])→ float
Returns linear correlation coefficient.

pydp.util.get_next_power_of_two(arg0: float)→ float
Outputs value of a power of two that is greater than and closest to the given numerical input.

pydp.util.mean(*args, **kwargs)
Overloaded function.

1. mean(arg0: List[float]) -> float

10.3. Distributions 35

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PyDP, Release 1.1.1

Calculation of the mean of given set of numbers for a double int data type.

2. mean(arg0: List[int]) -> float

Calculation of the mean of given set of numbers for an int data type.

pydp.util.order_statistics(arg0: float, arg1: List[float])→ float
Sample values placed in ascending order.

pydp.util.qnorm(arg0: float, arg1: float, arg2: float)→ pydp._pydp.StatusOrD
Quantile function of normal distribution, inverse of the cumulative distribution function.

pydp.util.standard_deviation(arg0: List[float])→ float
Standard Deviation, the square root of variance.

pydp.util.variance(arg0: List[float])→ float
Calculate variance for a set of values.

pydp.util.vector_filter(arg0: List[float], arg1: List[bool])→ List[float]
Filtering a vector using a logical operatio with only values selected using true output in their positions.

pydp.util.vector_to_string(arg0: List[float])→ str
Conversion of a vector to a string data type.

10.5 ML

10.6 Partition Selection

class pydp.algorithms.partition_selection.PartitionSelectionStrategy

Base class for all (,)-differenially private partition selection strategies.

should_keep(num_users: int)→ bool
Decides whether or not to keep a partition with num_users based on differential privacy parameters and
strategy.

pydp.algorithms.partition_selection.create_partition_strategy(strategy: str, epsilon: float, delta:
float, max_partitions_contributed:
int)→ PartitionSelectionStrategy

Creates a PartitionSelectionStrategy instance.

Parameters

• strategy –

One of:

– ’truncated_geomteric’: creates a Truncated Geometric Partition Strategy.

– ’laplace’: creates a private partition strategy with Laplace mechanism.

– ’gaussian’: creates a private partition strategy with Gaussian mechanism.

• epsilon – The 𝜀 of the partition mechanism

• delta – The 𝛿 of the partition mechanism

• max_partitions_contributed – The maximum amount of partitions contributed by the
strategy.

36 Chapter 10. PyDP

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://arxiv.org/pdf/2006.03684.pdf

PYTHON MODULE INDEX

p
pydp.util, 35

37

PyDP, Release 1.1.1

38 Python Module Index

INDEX

A
add_entries() (pydp.algorithms.laplacian.BoundedMean

method), 21
add_entries() (pydp.algorithms.laplacian.BoundedStandardDeviation

method), 24
add_entries() (pydp.algorithms.laplacian.BoundedSum

method), 22
add_entries() (pydp.algorithms.laplacian.BoundedVariance

method), 26
add_entries() (pydp.algorithms.laplacian.Count

method), 31
add_entries() (pydp.algorithms.laplacian.Max

method), 27
add_entries() (pydp.algorithms.laplacian.Median

method), 30
add_entries() (pydp.algorithms.laplacian.Min

method), 28
add_entries() (pydp.algorithms.laplacian.Percentile

method), 32
add_entry() (pydp.algorithms.laplacian.BoundedMean

method), 21
add_entry() (pydp.algorithms.laplacian.BoundedStandardDeviation

method), 24
add_entry() (pydp.algorithms.laplacian.BoundedSum

method), 22
add_entry() (pydp.algorithms.laplacian.BoundedVariance

method), 26
add_entry() (pydp.algorithms.laplacian.Count

method), 31
add_entry() (pydp.algorithms.laplacian.Max method),

27
add_entry() (pydp.algorithms.laplacian.Median

method), 30
add_entry() (pydp.algorithms.laplacian.Min method),

28
add_entry() (pydp.algorithms.laplacian.Percentile

method), 32
add_noise() (pydp.algorithms.numerical_mechanisms.NumericalMechanism

method), 34

B
BoundedMean (class in pydp.algorithms.laplacian), 21

BoundedStandardDeviation (class in
pydp.algorithms.laplacian), 24

BoundedSum (class in pydp.algorithms.laplacian), 22
BoundedVariance (class in pydp.algorithms.laplacian),

25

C
correlation() (in module pydp.util), 35
Count (class in pydp.algorithms.laplacian), 31
create_partition_strategy() (in module

pydp.algorithms.partition_selection), 36

D
delta (pydp.algorithms.laplacian.BoundedMean prop-

erty), 21
delta (pydp.algorithms.laplacian.BoundedStandardDeviation

property), 24
delta (pydp.algorithms.laplacian.BoundedSum prop-

erty), 23
delta (pydp.algorithms.laplacian.BoundedVariance

property), 26
delta (pydp.algorithms.laplacian.Count property), 31
delta (pydp.algorithms.laplacian.Max property), 27
delta (pydp.algorithms.laplacian.Median property), 30
delta (pydp.algorithms.laplacian.Min property), 29
delta (pydp.algorithms.laplacian.Percentile property),

32
delta (pydp.algorithms.numerical_mechanisms.GaussianMechanism

property), 34
diversity (pydp.algorithms.numerical_mechanisms.LaplaceMechanism

property), 34

E
epsilon (pydp.algorithms.laplacian.BoundedMean

property), 21
epsilon (pydp.algorithms.laplacian.BoundedStandardDeviation

property), 24
epsilon (pydp.algorithms.laplacian.BoundedSum prop-

erty), 23
epsilon (pydp.algorithms.laplacian.BoundedVariance

property), 26
epsilon (pydp.algorithms.laplacian.Count property), 31

39

PyDP, Release 1.1.1

epsilon (pydp.algorithms.laplacian.Max property), 27
epsilon (pydp.algorithms.laplacian.Median property),

30
epsilon (pydp.algorithms.laplacian.Min property), 29
epsilon (pydp.algorithms.laplacian.Percentile prop-

erty), 33
epsilon (pydp.algorithms.numerical_mechanisms.NumericalMechanism

property), 34

G
GaussianDistribution (class in pydp.distributions),

35
GaussianMechanism (class in

pydp.algorithms.numerical_mechanisms),
34

Geometric() (in module pydp.util), 35
get_diversity() (pydp.distributions.LaplaceDistribution

method), 35
get_next_power_of_two() (in module pydp.util), 35
get_uniform_double()

(pydp.algorithms.numerical_mechanisms.LaplaceMechanism
method), 34

get_uniform_double()
(pydp.distributions.LaplaceDistribution
method), 35

L
l0_sensitivity (pydp.algorithms.laplacian.BoundedMean

property), 21
l0_sensitivity (pydp.algorithms.laplacian.BoundedStandardDeviation

property), 24
l0_sensitivity (pydp.algorithms.laplacian.BoundedSum

property), 23
l0_sensitivity (pydp.algorithms.laplacian.BoundedVariance

property), 26
l0_sensitivity (pydp.algorithms.laplacian.Count

property), 31
l0_sensitivity (pydp.algorithms.laplacian.Max prop-

erty), 27
l0_sensitivity (pydp.algorithms.laplacian.Median

property), 30
l0_sensitivity (pydp.algorithms.laplacian.Min prop-

erty), 29
l0_sensitivity (pydp.algorithms.laplacian.Percentile

property), 33
l2_sensitivity (pydp.algorithms.numerical_mechanisms.GaussianMechanism

property), 35
LaplaceDistribution (class in pydp.distributions), 35
LaplaceMechanism (class in

pydp.algorithms.numerical_mechanisms),
34

linf_sensitivity (pydp.algorithms.laplacian.BoundedMean
property), 21

linf_sensitivity (pydp.algorithms.laplacian.BoundedStandardDeviation
property), 24

linf_sensitivity (pydp.algorithms.laplacian.BoundedSum
property), 23

linf_sensitivity (pydp.algorithms.laplacian.BoundedVariance
property), 26

linf_sensitivity (pydp.algorithms.laplacian.Count
property), 31

linf_sensitivity (pydp.algorithms.laplacian.Max
property), 27

linf_sensitivity (pydp.algorithms.laplacian.Median
property), 30

linf_sensitivity (pydp.algorithms.laplacian.Min
property), 29

linf_sensitivity (pydp.algorithms.laplacian.Percentile
property), 33

M
Max (class in pydp.algorithms.laplacian), 27
mean() (in module pydp.util), 35
Median (class in pydp.algorithms.laplacian), 30
memory_used() (pydp.algorithms.laplacian.BoundedMean

method), 21
memory_used() (pydp.algorithms.laplacian.BoundedStandardDeviation

method), 24
memory_used() (pydp.algorithms.laplacian.BoundedSum

method), 23
memory_used() (pydp.algorithms.laplacian.BoundedVariance

method), 26
memory_used() (pydp.algorithms.laplacian.Count

method), 31
memory_used() (pydp.algorithms.laplacian.Max

method), 27
memory_used() (pydp.algorithms.laplacian.Median

method), 30
memory_used() (pydp.algorithms.laplacian.Min

method), 29
memory_used() (pydp.algorithms.laplacian.Percentile

method), 33
memory_used() (pydp.algorithms.numerical_mechanisms.NumericalMechanism

method), 34
merge() (pydp.algorithms.laplacian.BoundedMean

method), 21
merge() (pydp.algorithms.laplacian.BoundedStandardDeviation

method), 24
merge() (pydp.algorithms.laplacian.BoundedSum

method), 23
merge() (pydp.algorithms.laplacian.BoundedVariance

method), 26
merge() (pydp.algorithms.laplacian.Count method), 31
merge() (pydp.algorithms.laplacian.Max method), 27
merge() (pydp.algorithms.laplacian.Median method), 30
merge() (pydp.algorithms.laplacian.Min method), 29

40 Index

PyDP, Release 1.1.1

merge() (pydp.algorithms.laplacian.Percentile method),
33

Min (class in pydp.algorithms.laplacian), 28
module

pydp.util, 35

N
noise_confidence_interval()

(pydp.algorithms.laplacian.BoundedMean
method), 21

noise_confidence_interval()
(pydp.algorithms.laplacian.BoundedStandardDeviation
method), 24

noise_confidence_interval()
(pydp.algorithms.laplacian.BoundedSum
method), 23

noise_confidence_interval()
(pydp.algorithms.laplacian.BoundedVariance
method), 26

noise_confidence_interval()
(pydp.algorithms.laplacian.Count method),
31

noise_confidence_interval()
(pydp.algorithms.laplacian.Max method),
27

noise_confidence_interval()
(pydp.algorithms.laplacian.Median method),
30

noise_confidence_interval()
(pydp.algorithms.laplacian.Min method),
29

noise_confidence_interval()
(pydp.algorithms.laplacian.Percentile method),
33

noise_confidence_interval()
(pydp.algorithms.numerical_mechanisms.NumericalMechanism
method), 34

noised_value_above_threshold()
(pydp.algorithms.numerical_mechanisms.NumericalMechanism
method), 34

NumericalMechanism (class in
pydp.algorithms.numerical_mechanisms),
34

O
order_statistics() (in module pydp.util), 36

P
PartitionSelectionStrategy (class in

pydp.algorithms.partition_selection), 36
Percentile (class in pydp.algorithms.laplacian), 32
percentile (pydp.algorithms.laplacian.Percentile prop-

erty), 33

privacy_budget_left()
(pydp.algorithms.laplacian.BoundedMean
method), 22

privacy_budget_left()
(pydp.algorithms.laplacian.BoundedStandardDeviation
method), 25

privacy_budget_left()
(pydp.algorithms.laplacian.BoundedSum
method), 23

privacy_budget_left()
(pydp.algorithms.laplacian.BoundedVariance
method), 26

privacy_budget_left()
(pydp.algorithms.laplacian.Count method),
32

privacy_budget_left()
(pydp.algorithms.laplacian.Max method),
28

privacy_budget_left()
(pydp.algorithms.laplacian.Median method),
30

privacy_budget_left()
(pydp.algorithms.laplacian.Min method),
29

privacy_budget_left()
(pydp.algorithms.laplacian.Percentile method),
33

pydp.util
module, 35

Q
qnorm() (in module pydp.util), 36
quick_result() (pydp.algorithms.laplacian.BoundedMean

method), 22
quick_result() (pydp.algorithms.laplacian.BoundedStandardDeviation

method), 25
quick_result() (pydp.algorithms.laplacian.BoundedSum

method), 23
quick_result() (pydp.algorithms.laplacian.BoundedVariance

method), 26
quick_result() (pydp.algorithms.laplacian.Count

method), 32
quick_result() (pydp.algorithms.laplacian.Max

method), 28
quick_result() (pydp.algorithms.laplacian.Median

method), 30
quick_result() (pydp.algorithms.laplacian.Min

method), 29
quick_result() (pydp.algorithms.laplacian.Percentile

method), 33

R
reset() (pydp.algorithms.laplacian.BoundedMean

method), 22

Index 41

PyDP, Release 1.1.1

reset() (pydp.algorithms.laplacian.BoundedStandardDeviation
method), 25

reset() (pydp.algorithms.laplacian.BoundedSum
method), 23

reset() (pydp.algorithms.laplacian.BoundedVariance
method), 26

reset() (pydp.algorithms.laplacian.Count method), 32
reset() (pydp.algorithms.laplacian.Max method), 28
reset() (pydp.algorithms.laplacian.Median method), 31
reset() (pydp.algorithms.laplacian.Min method), 29
reset() (pydp.algorithms.laplacian.Percentile method),

33
result() (pydp.algorithms.laplacian.BoundedMean

method), 22
result() (pydp.algorithms.laplacian.BoundedStandardDeviation

method), 25
result() (pydp.algorithms.laplacian.BoundedSum

method), 23
result() (pydp.algorithms.laplacian.BoundedVariance

method), 27
result() (pydp.algorithms.laplacian.Count method), 32
result() (pydp.algorithms.laplacian.Max method), 28
result() (pydp.algorithms.laplacian.Median method),

31
result() (pydp.algorithms.laplacian.Min method), 29
result() (pydp.algorithms.laplacian.Percentile

method), 33

S
sample() (pydp.distributions.GaussianDistribution

method), 35
sample() (pydp.distributions.LaplaceDistribution

method), 35
sensitivity (pydp.algorithms.numerical_mechanisms.LaplaceMechanism

property), 34
serialize() (pydp.algorithms.laplacian.BoundedMean

method), 22
serialize() (pydp.algorithms.laplacian.BoundedStandardDeviation

method), 25
serialize() (pydp.algorithms.laplacian.BoundedSum

method), 24
serialize() (pydp.algorithms.laplacian.BoundedVariance

method), 27
serialize() (pydp.algorithms.laplacian.Count

method), 32
serialize() (pydp.algorithms.laplacian.Max method),

28
serialize() (pydp.algorithms.laplacian.Median

method), 31
serialize() (pydp.algorithms.laplacian.Min method),

29
serialize() (pydp.algorithms.laplacian.Percentile

method), 34

should_keep() (pydp.algorithms.partition_selection.PartitionSelectionStrategy
method), 36

standard_deviation() (in module pydp.util), 36
std (pydp.algorithms.numerical_mechanisms.GaussianMechanism

property), 35
stddev (pydp.distributions.GaussianDistribution prop-

erty), 35

U
UniformDouble() (in module pydp.util), 35

V
variance() (in module pydp.util), 36
vector_filter() (in module pydp.util), 36
vector_to_string() (in module pydp.util), 36

42 Index

	Introduction To Differential Privacy
	Introduction
	Machine Learning and Data
	Why is Differential Privacy so important ?
	How is Differential Privacy implemented ?
	Local Differential Privacy
	Global Differential Privacy

	Formal Definition Of Differential Privacy
	Differential - Privacy In Real World
	Further Reading
	Introduction to PyDP
	Installation
	Examples
	Learning Resources
	Support and Community on Slack
	Contributing
	License

	PyDP
	Algorithms
	Numerical Mechanisms
	Distributions
	Util
	ML
	Partition Selection

	Python Module Index
	Index

